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7. Compact matter at great distances 

Christian Hermenau 

 

In this idea, which we pursue here, the formation process of 

new charge-neutral particles should take place in the 

outermost sphere exactly at the edge of the universe, as a 

continuous separation of finitely closed and infinitely 

indefinite domains. On the one hand, two planes of the size Re² 

stand opposite each other in the distance Re, which should be 

assigned to the electron and define a scale, which is the same 

everywhere in the universe for particles at their places of 

origin. On the other hand, two further planes are formed at 

the same time which lie within the electron planes, also the 

area of Re², but should have only the distance ed r . This 

distance depends on its place of origin and is only the same 

on the same universe shell. The plane distance d determines 

the size of the corresponding mass. In our part of the 

universe this distance stands for the size of the proton dp or 

an associated mass mP. Particles which are in the same 

reference system and whose relative velocity to each other is 

equal to zero have the same mass and the same plane distance. 

With moving particles, both the distance of the proton planes 

and that of the electron change according to the Lorenz 

transformation.  

The mass of the particles increases with the velocity, the 

plane distance and thus the mass size both of the electron and 

of the proton can be changed stepped in the order of magnitude 

 , which is extremely small and lies in the range of 5710 m  . 

This leads to tiny shifts in space, which we perceive as 

motion and which is due to an increasingly altered mass 

distribution. A particle that has had an energy-pulse exchange 

with another particle leaves a small change in the mass 

information of the other particle. From now on, they are 

connected to each other at corresponding time intervals, they 

"see" each other and the spatial attraction of the particles 

to each other is inherent in this. Apart from the spatial 

distribution, all particles are always connected to the edge 

of the universe in such a way that all distributions sum up to 

the edge, where they appear as if they were still at their 

place of origin with their original mass. This means that 

despite the unimaginably large number of particles and 
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particle movements, the regions can network locally from 

simple, ordered initial conditions to unimaginable complexity, 

but they nevertheless remain deterministic in an 

incomprehensible way. 

Under the aspect of "black holes", the question arises as to 

how high can network deterministically connected matter 

compress. What is the maximum packing density of the particles 

so that the basic conditions are still fulfilled?   

Connected particles have a common motion gradation in the   

range, in relation to each other the smallest displacement 

size lies in the range of dP steps. If one asks when two 

particles can still be regarded as separate, then the answer 

is that the planes may approach each other at maximum distance 

Pd  for protons and at maximum distance eR  for electrons. After 

that, the two particles would no longer be independent, which 

is not allowed because of the closed condition.  

A first measure for the maximum possible packing density of 

matter then lies with orders of magnitude in the range from 

distances up to the dP range. An extremely high force, as it 

occurs, for example, in large mass concentrations, could press 

a long chain of neutrons arranged linearly behind each other 

into each other. Then the maximum density of the neutrons from 

plane to plane would be at a size of one 
3010 kg / m³ . If we remain 

nevertheless in the range of particle volume then this density   

is far away from a black hole with 
5510 kg / m³. 

In the micro range black holes can be excluded. It is 

something else if individual protons are accelerated ever 

closer to the speed of light, for example in particle 

accelerators or even more so by quasars whose particles are 

found in cosmic rays. Cosmic particles of distant quasars can 

have a maximum energy of 
2010 eV  what corresponds to a mass of 

162 10 kg  or referred to Re the volume of a density of 
2810 kg / m³ 

(referred to Pd  at present 
3810 kg / m³ ) it constitutes. 

Such single high-energy particles cannot combine and thus, 

despite their enormous value, they are still far below those 

of the black hole.  

According to this model, there is only one particle that has 

such a density and that is the very first particle. Since it 

should belong to this universe, however, it must separate 
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exactly the inside from the outside, - thus represents a 

border relation, which it has so only in the origin, in the 

exact zero point of the universe. 

It can be assumed that this first particle has moved away from 

its origin because its position there is weightless, but at 

the same time any change in its position makes the particle 

lighter. For example by releasing energies and gaining 

potential. This particle can also exchange itself with other 

particles, but this would always result in motion. Each 

movement would lead these excellent first particles away from 

the zero position and since the mass differences are still 

very large here, the amounts of energy involved are also 

extremely large.  

It would be conceivable that the area of the zero point today 

is rather a void than a large mass accumulation. The matter 

particles from this area would adapt strongly to the middle 

area of the rest of the universe with ever larger connections. 

Thus becoming ever lighter and leaving the area of the zero 

point with it. The void could then have dimensions of many 

millions of light-years, thus be very inconspicuous and the 

particle masses of matter around it would not be noticeably 

heavier than in the large remaining area of the universe.  

The mass density required to form a black hole decreases 

quadratic with increasing radius 
2

S S1/ R : . A very large star 

could therefore, after its death, reach the necessary density. 

If a burnt out sun becomes denser and denser, a strongly 

increasing pressure develops in the centre, which allows the 

atoms to come closer and closer. The temperature rises and the 

speed of the electrons increases drastically, the atomic shell 

dissolves and the electrons are increasingly pushed into the 

nucleus with increasing pressure and density. The energy comes 

from the self-energy of a star.  

With a homogeneous mass distribution the density is constant 

and it follows  

R R
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   (1) 

Energy decreases linear with radius, however increases square 

with mass. Just because masses attract each other to Newton 
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and no shielding against gravity is known, the energy 

increases when a star contracts or accumulates further masses.  

A first counter-pressure results from the different phases of 

nuclear burning up to iron. After the star is burned out, it 

will continue to contract. This increases the pressure and 

density of the particles until first the electrons degenerate 

and the Fermi energy of the electrons increases strongly. If 

the pressure continues, the system can escape by pressing the 

electrons into the protons and the star transforms more and 

more into a pure neutron star.  

ep e n    

This will give us a degenerate Fermigas system of nucleons in 

the ground state. The temperature T is assumed to be 

approximately T=0. Since, according to Pauli, no two states of 

fermions may be equally occupied and only the lowest possible 

states are to be taken, the maximum pulse is followed by the 

fermi pulse pF. For each Fermi ion pair we get a volume of h³ in 

the 6 dimensional state spaces, in each case as location and 

impulse space. From this follows for the total number of the 

possible lowest states 

F

3
Spins

F
F p p

4d³r d³p V p 2
3N

h³ h³




 

 
 (2) and the particle number density  

there of 

3

FpN
n

V 3 ²h³
 


 (3). 

The total energy of all states is obtained by the relativistic 

energy impulse relation to 

Fp

4

0

2V
F(G) dp4 p² m²c p²c²

h³
  

r
 (4) 

The solution of the integral with the substitution u=p/mc 

leads to 

Fu

2 2

F F F F

0

1
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8
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   (5) 

For the relativistic case can approximated for uF>>1 

be written 

4

F
F 2

F

u 1
z(u ) (1 ...)

4 u
   . 

According to the 1st law of thermodynamics with T=0, the 

following applies to the pressure  
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 (7) which is relativistic about 
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 (8) with Fu 1?  gives 
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Fum c
P

² ³ 12
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 h

 (9) for Fu 1= in the 

nonrelativistic case. For neutrons the mass density is valid

N Nn m . The limit between relativistic and non-relativistic 

mass density for neutrons is thus 
18

c F N

m³c³
(u 1) m 6 10 kg / m³

3 ² ³
     

 h

and 
92 10 kg / m³ for electrons. Depending on the critical density 

c  we can write for the pressure of the degenerate Fermi gas 

4/3

4/3

N

c 3 ²
P
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  

h
 (10) and in the relativistic case to 

5/3
2

5/3

N

3 ²
P

15 ²m m

 
  

  

h
 (11) if c =  is. 

If we take as an example a 1.5 times solar mass, which is to 

be treated as a cold neutron gas of a neutron star, then we 

have 
57N 1.8 10   particles. Since all free electrons are in the 

nucleus, the identity of the iron atoms disappears and we get 

a uniform neutron star. Than the density raise to the value of 

1810 kg / m³  the Fermi pressure of the neutron gas. Each neutron 

should be in the lowest possible energy state, but this means 

that each particle must have a different energy value due to 

the Pauli prohibition. 

The total number of states for T=0 from p=0 to p=pF is  

n 3

FV(p )
n

6 ² ³


 h
 (13). With J=1/2 and each Fermi gas state is then 

occupied by two protons or two neutrons and 

n

FV(p )³
N

3 ² ³


 h
. From 
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this it follows for the Fermi impulse with 
n

F

3 ² ³A
(p )³

V 2






h
 or       

1/3

F

0

9
p

R 8

 
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h
 (14). 

For the minimum radius of a neutron star the result is 

3

FVp
N

6 ² ³


 h
 

with V as volume of the neutron star, for the Fermi impulse of 

the cold neutron gas

1/3

F

9 N
p

4 R

 
  
 

h
, where R is now the radius of 

the neutron star. For the mean kinetic energy per particle it 

is               

2/32

F
Kin

n n

p3 9 N 3 ²
E / N

5 2M 4 10M R²

 
   

 

h
 (15) 

The mean potential energy per neutron of a star of constant 

density is 

2

N
Kin

GNM3
E / N

5 R
  (16). If one now searches for the 

minimum radius of the total energy from potential and kinetic 

energy per particle, one obtains 

2/3

3 1/3

n

²(9 / 4)
R

GM N




h
 (17) via the 

derivative. 

For our example this would mean that the minimum neutron star 

radius is 12 km. With a star of mass 1.5Me and a radius of 12km, 

each state of each particle is occupied exactly once. The 

space is energetically full. No further particle can be 

absorbed within this volume, because all possible energy 

states are occupied. 

This should not only be valid for the quantum states, but it 

should also affect the gravitation. If all states are occupied 

and in the ground state and no more change is possible, in 

particular an excitation of the particles within the system 

and are further in the ideal case all positive and negative 

charges bound in the neutron, then the electrical charge 

distribution is limited to the respective neighbour particle. 

Thus there is no far-reaching electric field, no electric 

interaction, except in the immediate near range. For 

gravitational attraction, on the other hand, the opposite is 

true: gravitational exchange within the star is no longer 

possible, precisely because space is energetically full. One 

can also argue that each particle has a different velocity and 

is therefore not visible to another particle within the 
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neutron star. Gravity therefore remains only the outside, the 

area into the free outside space to the matter around it, 

which is not yet bound. This leads to the fact that the 

particles in the system do not attract each other any further 

and the pressure to the inside decreases decisively. The law 

of gravity in its simple 1/R² dependence, which is not 

shieldable, only works as long as the matter does not compress 

too much. To the extent that the freedom of quantum states in 

quantum space decreases, the gravitational behaviour of matter 

deviates from classical law, something like a counter-

acceleration occurs. 

The restriction by the Pauli prohibition probably has its 

reason in the unity of the universe as a whole. This leads to 

the fact that particles deep inside a neutron star only get 

through freely to the edge if no second particle has the same 

location/impulse state. If a maximum densely packed space 

would nevertheless continue to compress as usual, two separate 

particles would no longer be distinguishable. The connection 

would be interrupted and the universe as a whole would no 

longer be closed. 

A further cycle of the three possible ones concerns the 

gravitate relationship of the particles to each other, that 

are as big as the electrical connections from the effect 

steps, but distributed disorderly statistically and are 

smaller thereby with maximum 10
23
 Pulses/s around the factor 

10
38
 times in its effect. If two masses approach each other 

unilaterally, the number of connections increases accordingly 

and we feel an attraction. Far-reaching connections mean that 

matter is transparent enough for gravity. The atoms between 

the distant exchange particles then need different energy 

states so that the more distant regions can be reached. 

Two particles that exchange each other have the same location 

and the same state for a short time. Beginning and end are 

extremely short, equal or entangled. Therefore all 

intermediate states must be different; otherwise they do not 

reach each other. 

Two isolated elementary particles attract according to Newton 

with the force s

3

Mm
F(r) G r

r


r
 (18). M and ms are heavy masses. 

This gravitational force leads to an acceleration of the inert 

mass mt: 
s

t3

Mm
G r m r

r


r
&&. It turns out that one can set the inert 
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mass equal to the heavy mass and we obtain an accelerating 

radially symmetrical field around M, which is independent of 

the size of the second mass. 

According to Einstein, the equation of motion of a 

structurless single particle has the form 

j l k
j

kl

d²x dx dx

dx² ds ds
  (19). 

In it, gravitational fields can be described by space-time 

geometry. Thus a coordinate system can be found for any metric 

a space-time so that the equation of motion is reduced to 

jd²x
0

dx²
   (20). Thus all bodies remain in this system 

independently of their mass in a uniform acceleration-free 

movement, without the inert mass having to be set equal to the 

heavy mass. 

In quantum mechanics, the interactions are determined by 

bosons, which connect the fermions via a field. For gravity, 

it is assumed that this is the graviton. But the movement in 

space can also be explained with the plane model. An 

approximation would then be such that the two particles are at 

a multiple distance of Re from each other and approach each 

other by one Re or dp in the corresponding time span. Ideally 

with two protons this distance n=l/dP times, whereby the 

distance l decreases by one dp each time. The entire distance 

would then be 

P

1 l² 1
s

2 d 2
   (21). 

If we have only two isolated particles and look at the motion 

sequence in space according to the plane model, then we see 

that the motion does not correspond to that of Newton’s. 

For large mass accumulations, large quantities of particles 

are in the close-up range. Thus the blur plays no role and the 

inert mass can be regarded as a heavy mass. However, if we 

only have one single particle, i.e. if most of the particles 

are at a great distance, the blur has an immediate effect. The 

particle jumps correspondingly to the distant particles. This 

leads to a distribution function of the location, but also to 

the fact that two particles each see themselves as two inert 

particles, which attract each other in this environment, but 

do not as heavy mass. They then move towards each other more 

slowly according to the size of the mass and the movement 

decreases quadratic with the distance to each other. Now one 

sees much more clearly the inertia of the masses. 
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Two particles interacting with each other must have the same 

velocity in order to see each other. Since the particle 

velocities are in the delta range and are Fermi distributed, a 

suitable pair of particles is always found for a large number 

of particles. Nevertheless, single or few particles are 

dominated by inertia and only with large particle 

concentrations can the gravity be set equal to the inertia. 

So particle movements are of two kinds: On the one hand a 

blurred movement, v  and on the other hand a centre-of-mass 

movement vs. The centre-of-mass movement then corresponds to 

the inertia, it determines the planes distance of each Re and 

dp of an atom. The delta motion is related to the contacts to 

the other particles. Only particles that can assume the same 

state for a short time exchange themselves. Matching to this, 

always same packages are delivered into statistically each 

direction of space, which then are transferred to δ changes of 

planes and centre of gravity movements vs. Electrical 

connections depend on the centre of gravity of the movement, 

which must match. For example, in an atom the proton, as well 

as the electron, has the same centre of gravity movement. The 

movements lie on top of each other and thus the nucleus is 

always visible to the electron. The exchange takes place via 

identical energy packets, which bring the electron one Re-step  

and the proton one dp-step closer. The attraction depends on 

the distance, since the path for the packets increases with 

s². 

Particles do not see each other in the gravitational cycle if 

the velocities are different. The measure is the motion of the 

centre of gravity which lies in δ-region, but not every δ-step 

has to be used. Thus the gravitation can be very far-reaching. 

According to the general theory of relativity mass changes the 

geometry of space. Each mass particle bends a little the space 

structure. One assumes intuitively from the fact that the 

space is something and that masses can change the space, take 

up energy, in timeless and continuous form. On the one hand, 

it is not at all clear how gravity comes about and on the 

other hand, a structure of space of any kind has not yet been 

proven. For large mass accumulations there is no doubt about 

the validity of the equations and as numerous experiments have 

shown, for large masses the equations of motion behave quite 

as expected. Nevertheless, relations in details can develop 

quite different, which in turn leads to different results 

under certain boundary conditions. The gravitational force is 
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so extremely small that independent measurements on a few 

isolated particles are not possible. Conversely, all 

gravitational measurements involve so many particles that no 

conclusions can be drawn about the exact form and nature of 

the gravitational exchange. We rightly assume that gravity 

cannot be shielded and conclude this from the fact that, for 

example, we are attracted at the Earth's surface with a force 

which corresponds to an attraction to all particles of the 

Earth. This we transfer further on to mass accumulations, 

which are still by many orders of magnitude heavier, than 

those of the earth or the sun. But is that really so? Can the 

masses condense boundlessly or accumulate boundlessly?  

Compared to the average density in the universe, the density 

of our Earth is very high, but it does not seem to lead to any 

measurable conspicuities at least on Earth. It looks as if 

every single mass particle bends the space and this total bend 

add up to the surface. And yet it cannot be like this, if only 

because a single particle cannot be located so precisely. In 

addition, the forces are mediated by gauge bosons and probably 

also by gravity. This in turn would mean that the movements 

would only change quantized and the energy states in space 

would also change in quantized structures. But does space 

change? Does space have to change at all if gravity is 

regulated by exchange particles? Does the space between the 

particles exist at all or is there dualism in the description 

of the particles? Or are space and time only auxiliary 

variables to better describe the contradiction between 

timeless exchange and finite time variables in space of slowly 

moving masses? 

So far we have compared the gravitational forces with the 

electric forces, with the difference that charges are 

concentrated on two particles, but gravitational exchange 

should take place statistically to all normally distributed 

particles. The space itself then has no special meaning. 

Particles do nothing with space, so space can also be empty or 

only make sense as an abstract construct. In addition to these 

connections, the condition should now be added that particles 

see themselves gravitatively only if their plane distance is 

equal and their distance is a multiple of this plane distance. 

Only then they see each other and when they see each other, 

they approach each other in a short-term entangled way. For a 

very short moment, there is no space between them until they 

are one unit closer to their old position. Short exchange 

connections between particles show no aging process. They can 
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be as far away as you want, at the moment of the connection no 

information is lost to space or anything else. 

With this condition, the particles would not only act on the 

immediate environment, but would also be able to establish 

connections to each other over very large distances. This is 

also the case if the density increases extremely. However, the 

reverse is also true, that there is then a maximum boundary 

for the degree of compaction. If the density in a star 

increases to the core density, e.g. if all particles are close 

to each other with almost the same plane distance, in integer 

distances to each other, then the gravitation would only reach 

the nearest neighbour. Nothing could add up and the inner 

particles would no longer have access to the outside. However, 

this is absolutely necessary because of the closed condition 

of the universe as a whole. As a consequence, all particles 

would have to have a different plane distance, or to express 

it with Fermi, they have their own quantum state. Only then 

would the matter around it be transparent for the innermost 

particle and the basic condition, which in the first cycle the 

particles inside connect with the antiparticles at the edge, 

be fulfilled for each individual particle. This makes the 

condition that gravity cannot be shielded obsolete. At least 

in the Fermi state, the particles no longer attract each other 

because they can no longer see each other and the 

gravitational force is increasingly directed outwards. As a 

consequence, the force that contracts the star and its 

associated potential energy would be smaller than that of the 

Fermi energy, which wants to remove the particles from each 

other as far as possible. The star thus seeks a new 

equilibrium with a correspondingly larger star radius. 

In the third cycle mass particles exchange each other, which 

lead to the fact that they come closer each time around a 

small unit. Thus gravity seems to be only attractive. The 

closer the particles come to each other and the more particles 

are in the vicinity, the more often the particles therefore 

exchange themselves in the near range and correspondingly less 

with particles in the far range. However, this process has a 

counter-process in the micro range. If particles get closer 

and closer, the number of free states becomes more and more 

limited. This increases with the number of particles and with 

proximity. So with increasing density the number of the 

particles that still see each other changes, because their 

distance and their direction to each other has exactly the 

correct multiple. More and more particles do not see each 
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other anymore, because the number of possible quantum states 

in space becomes more and more limited. If a particle does not 

find a suitable partner in the star during a time process, it 

continues to the extremely thinned out outer region, i.e. 

inevitably to compounds in large distance. 

 As long as the particles are not particularly compacted, this 

is only secondary. But the more the particles compacted in 

space, the more a counterforce is shown, which on the one hand 

counteracts the acceleration of mass towards the centre of the 

stars, and on the other hand also in an additional force to 

particles which are distributed far outside the mass 

accumulation. Thus distant masses are attracted with a 

stronger force than would result from the normal Newton´s 

equations of motion. This means on the one hand that stars may 

not be able to compress to the pure neutron state, and thus 

not at all, that matter disappears in a black hole. On the 

other hand that matter observed at a greater distance around 

an apparent black hole is attracted with a higher force than 

after the classical formulas. In particular, extremely large 

mass aggregations as in galaxies, where not only the highest 

density of matter is located in the centre, but where 

supermassive black holes are suspected in every galaxy in the 

centre, would show this increased counterforce in the outer 

areas, the galaxy arms. These masses would have to be 

attracted more strongly than could be explained by the 

Newton´s dynamics alone. The masses in the outer area would 

have to rotate faster for an equilibrium - which is also the 

case. One could even transfer this to the whole space in the 

universe. The outer galaxies may not have enough mass to find 

a counterpart for all particles from the interior, so that the 

increasingly empty space will continue to pass through. The 

more matter from the originally evenly distributed form 

concentrates on larger and larger density accumulations, the 

further an increasing cross-linking reaches on ever larger and 

more distant area of the whole. An equilibrium state would 

thus not result from the conditions of the bodies in the 

immediate vicinity, but it would be superimposed by ever more 

distant masses from the most diverse regions. Here, too, 

distant galaxies seem to move much too fast for the state of 

equilibrium. For the normal redshift calculations, which are 

interpreted as an escape movement, the increased attraction 

must now be added up, which has an ever stronger effect with 

increasing distance. 
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Although this additional force is related to Fermi energy, it 

is not limited to the near range due to the nature of the 

particle exchange - Fermi energy forces the particles to move 

not only to higher velocities, but also to particles at 

greater distances. This gives us an independent additional 

force in the third cycle, which does not necessarily decrease 

proportionally with 1/R², but probably only works off at mass 

objects. 

In addition, a second additional force from the first cycle is 

still to be built up by the fact that particles move away from 

their original place of origin during contraction. For the 

universe as a whole, the sum of all particle masses increases 

up to the edge so that at RU the universe is exactly closed, 

i.e. no information comes in or out. Here lies the actual 

event horizon that separates the inside from the outside. If 

the particles move away deep inside, the path between the 

particle and its edge is always somewhat longer, which is only 

allowed if the time is stretched, i.e. a small retroactive 

acceleration acts on the individual particle towards its 

origin. At the edge the gravitation must present itself as if 

everything was still in the origin, here one learns nothing 

about the many connections and movements in the interior. 

These accelerations are therefore extremely small in relation 

to the distance to the edge, but can increase measurably for a 

large number of particles and in extreme cases, together with 

the increase in counter-acceleration at high densities, hold 

up a collapse of matter. 

In order to be able to connect the quantities with each other 

concretely with numerical values, we proceed from a simple, 

linear connection of an increasing density ρ in comparison to 

an initial density ρ0 for a re-acceleration a in relation to an 

initial acceleration a0 from 

0 0

a

a




. In addition, the initial 

acceleration a0 belonging to ρ0 should be zero for 0 . Then 

0

0

a a 1
 

  
 

 (22) it must apply. If we also assume that the mass 

remains constant when matter contracts from a cloud to a dense 

star, then we can also write 

3

0
1 0

R
a a 1

R³

 
  

 
(23). The acceleration 

increases proportionally 1/R³, which is not noticeable because 

the density also changes when contracting with R³. But now we 

have, as mentioned, a second additional force. Therefore we 
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have to introduce a second acceleration or change the basic 

acceleration. This acceleration should increase only linearly 

with the decreasing radius. 

To each area, from which the matter contracts, there is always 

a neighbouring area, with which the mass has condensed also to 

the sphere. To these neighbouring suns then a connection 

should exist further, that does not decrease any more 

quadratic with the distance, but it should be a direct 

connection, that becomes weaker consequently only linearly 

with the distance. Also here we can assume an additional 

acceleration increase of 0
1

R
a a

R
 (24) approximately from the 

original size of the space area R0 up to the radius size of the 

star R. Together with (23) 

3

0 0
0

R R
a a 1

R³ R

 
  

 
(25) follows 

altogether. 

The one can generally be omitted, so that follows 

4

0
0 4

R
a a

R
 (26), 

thus an increase of the acceleration with the 4th power. 

If we assume the original density on our universe shell 

24

1R 3 10 m  , then this density lies at 0U 24

0 2

1 e

M
5,7 10 kg / m³

4 R R

   


 

At this density, the mean distance of two atoms is at 

N
3

s 4
03

M
R 0.04m 


. 

The mean density on earth is 5400 kg/m³, the density of the 

sun is 1400 kg/m³. During swing-by flights, counter-

accelerations of about 
5a 5 10 m/ s²   occurred, which could not be 

explained. If we estimate that a counter-acceleration of about  

a=0.01m/s² (see below) is possible on the solar surface with 

(24), which would not be noticeable any further, then the 

value follows for the basic acceleration 
38

0a 6.4 10 m/ s²  . 

If we look at the energy that is put in per particle from its 

origin with an increasing compression of the particles, we get 

for the energy related to a particle  

0 0

R R 4
40

W 0 N 0 04 3

0R R

R1 1 1 1 1
E / N Fds M a dr M a R

N N R 3 R³ R

 
     

 
   (27). 
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Since R0 is very large compared to R, the term 
3

01/ R  can be 

neglected. 

Together with the repulsive Fermi energy of 

2/32

F
Kin

n n

3 9 N 3 ²
E / N

5 2M 4 10M R²

  
    

 

h
 (28) and the potential energy per 

particle 

2

n
Pot

GNM3
E / N

5 R
  the total energy results in 

2/3 4 2

0 n
Kin N 0

n

R GNM9 N 3 ² 3
E / N M a

4 10M R² 3R³ 4 R

 
    

 

h
 (29) 

From this a minimum stable radius of 5000 km of our sun can be 

calculated by the derivation, i.e. only to the current size of 

the earth and not to the Schwarzschild radius of only 3 km. 

For the heaviest known sun R136a1 with a mass of about 

M 300M e  the same calculation results in a last, minimum 

stable radius of about 12,500 km, which is still far away                                                                   

stars than R136a1 are known. We may have found a maximum size 

for a closed subsystem here. Particle accumulations might not 

be able to contract from arbitrarily large space-areas. 

Nevertheless, it is possible that closed mass systems such as 

individual suns first attract and then connect as a whole 

system. This time however, perhaps no longer accords to 

Newton's 1/R² law. This law is possibly designed for 

comparatively homogeneous particle distributions in the 

relative close-up range. 

So if we limit the gravitational law according to Newton even 

further and postulate a limited directional dependence of 

compacted matter, then masses at the surface would no longer 

be attracted statistically by all other particles, but there 

is a one-sided orientation. Also, as already mentioned above, 

space itself should no longer be able to absorb the 

gravitational energy, but only particles within the star or 

masses in the closest possible near range. The parts of 

exchange particles, which were not bound in the star, then do 

not pass through the space isotropic and homogeneous. They do 

not weaken thus, since the space is supposed to be 

structureless but they concentrate on the next neighbouring 

stars. Only here the additional energy should mainly 

decompose. Both the energy of the neighbouring star should be 
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absorbed and the own excess energy should be released in the 

opposite direction. 

So if we free ourselves from the idea that space is metrically 

curved and replace this with a connection related to masses, 

then we can also look at distances from the point of view of 

the exchange particles without time or space and obtain force 

shares that are oriented to the spatial distributions. On the 

one hand, at great distances, there are rather chain-like 

connections; on the other hand, at the stars themselves, for 

great densifications, there are also counter-forces to 

gravity. 

If, we look for example at the next sun of comparable size at 

a distance of four light years and claim that the energy 

mainly decomposes at the neighbouring suns, then the 

acceleration decreases probably only linearly with the 

distance. The open particles are mainly concentrated on suns 

and the energy does not flow into space. It can be assumed 

that the acceleration decreases, because with increasing 

distance, the connection information units have disappeared 

longer and longer in the interspace. An acceleration on the 

solar surface (
8

SR 7 10 m  ) of aS=0.01 m/s² and the distance of 

about RN = 4 Ly to the next comparable neighbour sun leads to 

an acceleration of 
10S

S

NS

R
a a 1.8 10 m/ s²

R

   . This value is of the 

same size as the value resulting from the movement of the sun 

in relation to the centre of the Milky Way (
101.8 10 m/ s² ). 

It also fits to this idea that the star density increases 

towards the centre, which leads to an increase in acceleration 

due to S
S

R
a a

R
 , but is compensated again with a smaller radius 

towards the centre. The velocities of the stars thus remain 

approximately constant, independent of the radius. 

If the too high velocity were not due to the dark matter, but 

to the direct exchange between the suns, then the too strong 

connections could be attributed to chain-shaped connections 

between the stars. The inner, relatively starry bulge would 

pass on its rotational motion via chain-like connections to 

the increasingly outer stars, which stabilize in spiral arms. 

On Earth we have found a0=0.00005 m/s² which is repulsive and 

cannot be explained by the law of gravity. It would also be 

conceivable here that this value comes from the sun, as a 
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small part of the energy which already degrades something at 

the earth. If we use the same formal connection as that to our 

neighbour sun, then follows with S E
S E

S

R
a a

R
  from it an amount 

for the acceleration at the solar surface of Sa 0.01m/ s²  which 

we have already used above. 

Matter accumulations in star systems of large galaxies with 

central masses of up to 17 billion solar masses probably do 

not have exactly the same boundary conditions as those for 

mass concentrations of single stars. In principle, individual 

stars can also remain statically at the location of the 

original particles. However, if stars merge into systems, if 

closed systems merge with neighbouring systems, then they can 

fall spirally onto each other or stabilize on orbits. If they 

stabilize in their movements, only the directional energy 

exchange remains relative to each other, which leads to 

stronger connections than those with Newton. If they move 

towards each other, two systems approach which are already 

very dense in their space. Seen as a whole, the distribution 

of space leaves ever larger voids on one side and 

accumulations of matter on the other. If many of these stars 

concentrate on one area of space, then they leave behind a 

huge void of corresponding dimensions. It is hardly imaginable 

that in an originally homogeneously constructed universe, such 

energy accumulations can accumulate in ever smaller areas of 

space without the build-up of rebounding counterforces and 

influencing the contraction process. Simply from the larger 

void which leaves a huge mass concentration behind. 

Ultimately, the boundary condition always remains that 

particles must not disappear, i.e. an event horizon must not 

set itself. Probably, in an increasingly full quantum space, 

the particles will not only switch to ever higher velocities, 

but Newton's law will also change to the same extent. 

Particles will no longer statistically connect to other 

particles according to 1/R², but will increasingly switch to 

the now very close neighbour suns. The near suns are attracted 

more strongly, but the own sun cannot hold its atoms so 

strongly any longer. It expands again and that with burned out 

very dense suns much stronger than with active suns. The 

density decreases, whereby the quantum space would increase 

nevertheless by the increasing number of the approaching 

neighbour suns. If we start from the centre of this increasing 

mass accumulation, then the Newton law, starting from the 

centre, would weaken increasingly, because here most of the 
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particles have already become invisible to each other. 

Although they are no longer visible to each other, they still 

have connections to areas further out. Nevertheless, there is 

a shift in energies when particles inside increasingly take up 

their connections to atoms further outside. We then again have 

an excess of energies that cannot be dissipated into the large 

void but extends along the filaments. The more stars and 

particles flow in, the stronger these distant connections 

become. These compounds stop the compression and stabilize the 

quantum space. Due to the Fermi energy, particles in masses of 

several billion solar masses sometimes move at very high 

speeds, simply because there are an insanely large number of 

particles in a comparatively small area of space. 

Nevertheless, the particle density is not excessively high, 

because the space area must be larger than that of the 

Schwarzschild radius, which is, for example, 17 billion solar 

masses at 
13R 5 10 m  .  This corresponds to a particle distance 

of 
9s 1.8 10 m   a density of 0.06 kg/m³ and is thus far below the 

density on our sun. 

A development of the universe from the outside to the inside 

and from an ordered initial state to a more and more 

interconnected complexity could lead to small back 

accelerations, which increase with increasing interconnection, 

dependent on density, up to a limit value, which cannot be 

exceeded. Conversely, the contact of large mass concentrations 

changes over long distances, in a thinned out space. Perhaps 

the law of gravity according to Newton is even spatially 

limited and at great distances cohesion of the structures only 

shows up from object to object. This would explain on the one 

hand the filamentary arrangement of the mass systems and on 

the other hand the too large amount of force connections. 


