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6. Entangled spin states 

Christian Hermenau 

 

The quantum-mechanical phenomenon of entanglement may show 

that the connections between the particles are not yet 

correctly interpreted. On the one hand it is not clear why 

elementary particles have a spin at all and on the other hand 

why a granular spatial structure cannot be detected even in 

extremely distant gamma-ray bursts. 

At first, only the known derivations of entanglement shall be 

shown, and then further considerations on spin and space 

itself shall be made. 

H 
1  and H 

2  are two independent Hilbert spaces with the base 

vectors 
1

m and 
2

n . For this the direct product is explained 

for all vector pairs 
1 2

m n   , or briefly 
1 2

m n  . To each of 

the pairs a vector of a Hilbert space H shall be assigned, 

which is completely spanned by the vectors. 

  
1 2 1 2 2 1

m n m n n m         

 
1 2

m n   thus forms a basis of the direct product space of two 

Hilbert spaces. 

H 
1
=H 

1H 
1 - H 1H 

1 
then each vector 

12 H   can be 

represented as a linear combination of 
12 1 2

m
m,n

c     (1). 

In addition, the direct product of the vectors 

1 1

m m
m,n

a     H  1 

2 2

n n
m,n

b     H  2 (2) should be represented by 

12 1 2 1 2

m n m n
m,n

a b         H  . 

(The integral stands for continuous fractions) 
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In product room H , a scalar product is explained which is used 

for 
12 1 2

m m n
mn

c    and 
12 1 2

m r s
r,s

d      

is given by 
12 12 * 1 1 2 2 *

m n r m s n m m
m,n,r,s m,n

c d c d           (3). 

Now applies to separable elements 
12 1 2    and 

12 1 2   

after (2) 
1 1

r r
r

f  and
2 2

s s
r

g   it follows 

 
12 12 1 1 2 2        

then mn m nc a b  and  

1 1 * 1 1 * 2 2 *

n r s m r r m m r n n
m,r m n

d f g a f a f b g              and 

1 2 *

n n
mn

b g     with (3) follows

12 12 * * * *

m n m n m m n n
mn m m

a b f g a f b gs        .   

However, the states of (1) also include those, that are not 

separable as a product and are described as an entangled 

state. For separation, the coefficients cmn of the products 

would have to be decomposable into cmn=ambn. From the linear 

dependence of the rows of the matrix Mmn:=ambn follows 

det(cmn)=0 and the cmn can be chosen so that this condition is 

not fulfilled. 

The basis of the states of spin-1/2-particles is formed as a 

product of location and spin states (x,s) (x)u(s)   with u(s)
 

  
 

. 

Two-particle states are then 

 1 1 1 2 2 2 1 1 2 2 1 1 2 2(x ,s ) (x ,s ) (x ) (x )u (s )u (s )    . 

The general state is a superposition of such product states. 

As basis of the one-particle states we take the eigenstates  

1
u

0


 
  
 

and 
0

u
1



 
  
 

.  
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A basis of the two-particle spin states is then formed by the 

states 

     1 2u u  ,  1 2u u  ,    1 2u u  ,    1 2u u  . 

The most general spin state can be superposed from the basic 

states. The spin state σ of the entire system is defined by 

σ=σ1+σ2 except for the factor / 2h . 

For the symmetric and the antisymmetric superposition the 

following applies 

        s 1 2 1 2

1
u u u u

2
      ;    s 1 2 1 2

1
u u u u

2
       (4). 

Both are a common eigenstate of the two operators σ² and σz. 

It applies σ²ψa=0, σzψa=0, σ²ψs=8ψs, σzψs=0. 

σ²ψs=8ψs means with a total spin of s=1 for ψa results in s=0 

and the two states ψs and ψa are not factorable so entangled. 

They can thus be described as the product of a one-particle 

state. 

From (4) results 1 2 s a

1
u u ( )

2
      , 1 2 s a

1
u u ( )

2
      and thus

1 2 s s s 1 2

1 8
²u u ( ² ² ) ²u u

2 2
              (5)   

A measurement from σ² means that the eigenvalues ψs and ψa are 

superposed to the eigenvalues 8 and 0. Since also their 

amplitudes are equally large their eigenvalues or the total 

spin 1 or 0 must be found with the same 50% probability. 

This means now that if we measure the spin component σ1z at a 

particle 1, which moves to the left, then one finds to 50% 

probability the eigenvalue +1. After the measurement the 

system is in the state u1+u2- with the property 1 2 1 2²u u u u     . 

Moreover 2s 1 2 1 2u u u u      , the second particle has the eigenvalue 

-1. 

In the remaining 50% of the cases the 1st particle has the 

eigenvalue -1 and the 2nd particle the eigenvalue +1. 

This is independent of their distances. 
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According to the Copenhagen interpretation, it makes no sense 

to determine any property of a particle as long as no 

measurement has been made on it. The two particles are 

regarded as an inseparable unit  s 1 2 1 2u u u u / 2       (5) as long 

as no measurement is made. At the moment of the measurement on 

the 1st particle there is an instantaneous effect on the 2nd 

particle independent of the distance. 

This remarkable result does not contradict the theory of 

relativity, not because the determinism could be violated, but 

because this is exactly the actual meaning of an information 

transfer at the speed of light. A quantum that moves with c in 

our matter-space-time image must, according to our ideas, have 

a position at a certain point in time. This is the view from 

our resting system. For the quantum, however, time stands 

still and space disappears in the direction of motion. 

Beginning and end are instantaneous. Each measurement means a 

determination of the quantum back into our space-time. A 

quantum in the middle of its movement cannot be measured or 

fixed because there is no in-between for the quantum. 

When the spin 1/2 quantum is entangled exactly this property 

of all particles moving with c becomes clear. There is a 

countable spatial size for us, which is however determined by 

our course of time. The space then seems to be granular, but 

of such a small structure that it is almost indifferent again. 

Nevertheless, very precise experiments over extremely large 

distances have shown that no dispersion can be detected, which 

would have been to be expected for gamma-ray bursts over 

extremely large distances with a grain size in the range of 

the Planck lengths. Space does not have to have an independent 

structure; it can only have reality for our resting world. 

Most of the connections between the particles run through 

bosons and thus in a temporary timeless world. Even entangled 

particles are indeterminate in their quantum properties as 

long as they are not measured. Only through measurement do 

they reconnect with our world and simultaneously detach 

themselves from the 2nd partner particle. 

The idea now is that the entanglement is not completely 

erased, but that the superimposed state is reduced to a 

respective tiny contact time. In an electrical or 

gravitational exchange, the two particles briefly exist 

together in a superimposed one-particle state that is 

independent of the distance. Beginning and end are for a short 
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moment
23

0t 1 10 s   spatially and temporally indeterminate. 

Nevertheless, the centre of gravity remains essentially the 

same at the same location except for a small blur, since the 

inert position is isotropic distributed to other particles on 

statistical average. 

This does not necessarily apply to spin. In the following it 

shall be shown that the intrinsic spin of the electron or the 

proton can be explained by a continuous entanglement of both 

particles. 

In an inhomogeneous magnetic field, as shown in the Stern-

Gerlach experiment, an atomic beam is deflected by its 

magnetic moment μ with the force F ( B)  (6). In quantum 

mechanics, the corresponding operator equation looks like 

this: $ µq
L

2m

 
   

 
 (7), µL   is the angular momentum operator of the 

electron on its orbit. 

The eigenvalues μ² provide the square of the magnetic moment. 

With µL l(l 1)   h  (8)one obtains $ µ
2 2

22
2q q

L l(l 1)
2m 2m

   
          

   

h
 (9) 

it then follows 

2
q

² l(l 1)
2m

 
   

 

h
 (10). Now this is also true in the 

ground state of hydrogen at l=0 and μ=0, but each electron 

nevertheless has an intrinsic angular momentum with the 

magnetic moment μs which is called spin. This spin and its 

associated spin operator S$  have the same properties as an 

angular momentum operator. Its eigenvalues for the component sZ 

have the values smh  with  ms= -s, -s+1 …., s-1, s and the value 

s=1/2. 

The following properties apply to the electron spin. The spin 

operator is hermitic and fulfills the rules of exchange

 i k iS ,S i S h ;    i, k, l, are cyclically. The spin is the value 1/2 

and the spin space is defined by exactly two linearly 

independent states 

 s       ;  . The complete condition is described by vectors 

from the product space H = H
 
 
x ⊗ H 

S
. A magnetic moment μ is 

connected to S and the Hamilton equation applies to the 

movement with spin  
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s
0

g q
H H B S

2m
      (11). 

Thus the general quantum-mechanical equation of motion in the 

Schrödinger image with spin particles is 

s
t 0

g q
i H B S

2m
      h   (12) 

The components to each   state are the Pauli spinors

(x, t) x,1/ 2      (x, t) x, 1/ 2     (13) and the corresponding 

adjunct spinors 
* (x, t)  ;  * (x, t) . 

S$ behaves like an angular momentum operator. The movement of 

the electrical charge of the electron associated with rotation 

generates the magnetic moment of the electron itself. This 

would mean, however, that the electron has a finite expansion, 

which is not necessarily assigned to the electron. A 

peculiarity of the interpretation of spin as rotation of the 

electron itself is that the eigenvalues of Sz have only the 

values s / 2 h . Moreover, it is not clear why the electrons 

rotate at all. Since one does not necessarily want to give the 

electron a size and the spin has exactly half a angular 

momentum as eigenvalue, one is reluctant to compare the spin 

completely with an angular momentum and generally understands 

it as an own quantum mechanical state. 

Let us nevertheless assume that the electron, according to our 

picture, has a structure of two planes of size Re² which 

rotates classically with Re/2 around its centre of gravity with 

its mass Me and an angular velocity of 0 02 f    (f0=1/t0), then 

for the classical angular momentum follows 
36

zL 2.6 10 Js   which 

is about 80 times too small a value to be associated with our 

rotation in space. 

In our picture, the electron and the proton clearly assume 

three different cyclic spatial positions and corresponding 

connections. In our space-time image a mass angular momentum 

should result from this. The spin then stands for a motion 

which, compared to a translational motion, rotates at the 

speed of light or a sequential temporal sequence which takes 

place with our minimum time pulses t0. This means that the spin 

rotation must not be inert, which would be conceivable with a 

sequence of connections. In this picture, the planes 

themselves are not regarded as the seat of mass, but only the 
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distance between the planes says something about mass, as a 

reference value. The movements of the planes in space, in 

contact with other particles, are delayed; here the change of 

the movement depends on the respective distance to the 

particles. The rotation around the centre of gravity itself 

only has meaning for a single opponent, with whom it has 

contact, and this can be interpreted as a short-term 

entanglement, as well as a classical rotation of two non-

separated particles, the electron and the associated proton. 

From this point of view it makes sense that the spin cannot be 

stopped or consumed but always has the same fixed value. It 

results from the changing short-term connections to a whole 

and does not have the same meaning as the angular momentum 

operator µL, which moves and is changeable in our space. 

Perhaps the quantum state of the spin remains entangled and we 

conclude only indirectly via its magnetic moment μs on its size 

and its direction and infer from this the spin size of / 2h . 

But if we see the rotation of the electron and the proton 

further than superimposed, then the spin 1/2 state is omitted 

and related to a radius of Re/2 we could assign the rotation a 

classical angular momentum for both masses geometrically 

averaged ( e pm m ), which then leads to an exact result / 2h  

given at our fixed exchange time t0. 

Then both, the proton and the electron have the same spin, 

which presents itself to us as / 2h  a measurement. Then the 

particles with t0 exchange themselves permanently, they change 

between inertial indefinite and electrically determined 

connections. From the point of view of the exchange particles, 

these connections are timeless and from our point of view they 

show up in their magnetic moment. If we measure the moment, we 

force the electron to separate from the proton for the 

measurement. This gives us a value that is positioned on our 

world and statistically halved. 

The extremely precise charge neutrality of electron and proton 

can also make sense with the help of entanglement. We give the 

electron a position on an inner stable position around a 

proton, which, due to the many connections to other particles 

(gravitational), no longer lies in the nucleus but in the 

range of uncertainty h. And yet the charges in the neutral 

atom are related to each other and cannot be measured 

externally. An electrically uncharged atom that is not 
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measured is like a common superimposed state where the exact 

position is ambiguous or non-existent. The charges do not 

behave like two spatially separated bodies, but like a whole, 

with only one centre of mass position which is without charge 

size. So charges could also be any small in size. If one tries 

to estimate the size of a charge with a charge- entangled 

neutron in a measurement, the electron will generally not form 

a connection with the neutron and the cross sections can be 

correspondingly very small. 

If entangled states between particles are actually time- and 

space-less, this can only be realized geometrically with 

particles as planes. With point-shaped particles we would have 

no direction vector and we would need an independent space-

time structure, which is open again just by the entanglement. 

But also spherical particles don't make sense anymore because 

of the entanglement, because we would have to explain a short 

phase of a space curvature at the beginning and at the end. 

How can the quanta change from a convex initial curvature at 

the start particle to a concave final curvature at the end 

particle? Exactly these difficulties would not occur with 

fixed plane structures. A measurement of the quanta from our 

world view would then result in the expected plane waves. 

 

 

 


