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planes and Coulomb force 
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 In the following, elementary particles should no longer be 
spheres, but two fixed planes in space. They exchange 
themselves with other planes by reducing or enlarging the 
space by an order of magnitude. The difference between 
electrical and gravitational exchange does not exist in 
different exchange particles, but only by the condition that 
electrical charges refer to solid countercharges. Two 
countercharges belong together and form a whole that is 
electrically neutral to the outside. Gravitational exchange 
processes are of the same kind, but they are networked with a 
statistically large number of other particles, to which there 
was contact at some point in time. Charges show repulsive 
forces, if they are equally charged. But also impacts of 
electrically neutral masses, lead to movements away from each 
other, which are slowly cancelled out in a closed system by a 
continuous attraction. So we see attracting forces as well as 
repulsive forces also in the area of neutral masses. When two 
neutral particles are exchanged, the spatial exchange does not 
lead to an approach, but to a distance that is gradually 
reduced again. 

This will not be discussed further here, but we will now 
exclusively consider the electrical sequence of two particles 
under the assumption that particles are two planes. Instead of 
the description about a space exchange between two 
corresponding planes, we assume again the familiar classical 
charge picture. Now only with the difference, that the 
positive or negative charge should be distributed on two 

planes 2
eR  of the same size.  We are interested in, whether in 

the near range the bonds can be described without the strong 
interaction and whether higher atomic nuclei can be 
successively built up. 
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We do not want to describe in detail the dynamic processes 
that occur when two charges approach each other, but only the 
forces and energies that affect the particles. We therefore 
neglect the magnetic fields and consider the charges to be 
approximately electrostatic. 

The basic equations are then the Maxwell equations of 
electrostatics. 

0rotE =   (1) and 0div Eε λ=  (2) 

or in integral form 0
C

E ds⋅ =∫  (4) and 0F
E df Qε ⋅ =∫  (5). 

C or F are a piece-wise smooth, arbitrarily closed curve or 
surface.  

kE  is the electric field of a system of point charges 1,..., Nq q . 

If we divide the exerted force between qk and qi by qi, then we 
obtain the electric field of the k-th charge at the location 
of the i-th charge 
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Thereby the position of the i-th particle was arbitrary, so 
any ri point in space can be arbitrary and we can write 
generally 

( ) ( )F r qE r=  (8) 

Let us write the point charge as space charge density

( )l l lq rλ τ= ∆  with λ   as space charge density and τ  as volume 

then follows from (7) 3
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the integral form 3 3
0
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r r rE r d
r r
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−
=

−∫  (10). This results 

in the Maxwell equation of electrostatics. 

Since we want to calculate further with surfaces, we also 
introduce the surface charge density σ . As above we get with

( )l l lq r fσ= ∆  for N →∞  the electric field in integral form as 
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Also here applies ( 0rotE = )  

0
0

1 1 ´ ( )́ ( )́ ´ 0
4 ´F F

div E df r r r df
r r

ε σ δ
πε

 
= − ∆ = − = − 
∫ ∫  in ³IR \F  (11). 

F lies in the finite |E| converges evenly towards zero for 

r →∞  and we can write 0 0
0

1 ´[ ]́ 1 ´ [ ]́´ 0
4 ´ 4 ´F F

n E n EE df rot
r r r r
ε εε

π π
⋅ ×

= − ∇ + =
− −∫ ∫  

(12). From the divergence of this equation follows out in the 
whole space    

                 0´ ´[ ]́ ´
| |́F

n E df
r r

σ εφ − ⋅
=

−∫  (13) 0φ∆ = . And from 

rotation with  

                   0´ [ ]́
´F

n EA
r r
ε×

=
−∫       0rotrotA A= −∆ =   (14). 

For an area-wide load distribution σ  the following therefore 
applies 

                      0rotE = in  3IR \F,  [ ] 0n E× =  on F (15) 

and                   0 0div Eε =  3IR \F, [ ]0n Eε σ⋅ =  on  F  (16). 

In the question of the binding energy of particles, the strong 
interaction force is to be attributed to the Coulomb force. We 
assume that the force with which two charges attract each 
other is proportional to 1/r² as long as it keeps its 3-dim 
connection to other particles. Only in the close range or 
still later, the degrees of freedom should jump to only one 
connection dimension and with this geometry jump, the 1/r²-
dependence should change into a linear one. This means that we 
are then in the force influence area of the strong 
interaction. 

A point charge in the range 0r =  makes little sense 

physically, but it is important that 0 0div Eε =  for mathematical 

reasons applies, because only an exact 1
²F r∝
 
proportionality 

fulfills this condition. If we had a connection 21 /F r ε+∝  with 
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1ε << , we could show that it follows 0 0div Eε ≠  from it. It 
turns out that a correction would have to result in a factor 

1510ε −< . 

Also in quantum electrodynamics it is shown that photons only 

have a rest mass of zero if 1/ ²E r∝  is exactly true.  

Otherwise one would expect from the Yukawa potential /re rµφ −∝  

the field /rE e rµ−∝ ∇  with a rest mass of a photon of 

/m cγ µ=  . According to today's measurement accuracy, 
81 / 2,5 10 mµ ≥ ⋅  this would make the mass smaller than 

528 10m kgγ
−≤ ⋅ . The deviation of the potential would thus remain 

at least in the range of 82,5 10r m≥ ⋅ . For our considerations 

the micro range is more interesting, here the validity of the

1/ ²F r=  dependence shows up with scattering tests of electrons 

at positrons up to the range of approximately 1710 m− . This 
value lays around two orders of magnitude under the assumption 
we postulated above. Nevertheless, this is not a 
contradiction, but only states that whenever free particles do 
not form a bond, i.e. even the strong interaction does not 

take effect, such particles behave with 1/ ²F r∝ , as they do. 
If electrons and positrons scatter only, then they remain 
independent the whole time. They do not see the opposite as 
antiparticles; otherwise they would form a bond and extinguish 
themselves as photons. That the particles jump from a 1/r² 
three-dim geometry into a constant one-dim dependence is 
supposed to go along with the strong interaction and their 

influence lies only in the range of less than one eR .  

The repulsion of two point charges can be used for work. This 
work was then put into the system in form of potential energy. 
It is called as electrical interaction energy during charge 
shifts. 

With a system of N point charges, the total electrical 
interaction energy of the system can be calculated from the 
contributions of all different pairs (1,2), (1,3), ....,(1,N), 
(2,3), ,(N-1,N) 

1
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Let us now make the transition from individual point charges 
to continuous charge distributions 

        ir r→      ( )iq r drλ→   

                                                       ´jr r→      ( )́ ´jq r drλ→  

        

so we obtain for electrical energy 3 3

0
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(18). 

With 0 0div E divλ ε ε φ= = − ∇ , the electric potential 
0
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(19) and a partial derivation we get 

  20 0 0
³ ³ ³

( ) ( )
2 2 2e R R R

W div d div d dε ε εφ φ τ φ φ τ φ τ= − ∇ = − ∇ + ∇∫ ∫ ∫  (20) or 

according to the Gaussian theorem 0
³

²
2e R

W E dε τ= ∫  (21). 

In this the integrant can be regarded as energy density 

0 ²
2ew Eε

=  (22). 

If we apply the field energy to a point charge 0/ (4 ³)E qr rπε= , 

then we get 0
2 4

00

²
2 16 ²e

q dW
r

ε τ
π ε

∞

= = ∞∫  (23) what was to be expected, 

but makes no sense. One way to avoid infinite energy would be 
to assume that particles are not singular. In doing so, we 
continue to follow the approach that what we regard as charge 
is not distributed on a sphere, but on two planes at a certain 
distance. We compare the geometric structure with that of an 
ideal plate capacitor, which, however, behaves like a point 
potential at some distance, whereby the distance of the plates 
is determined by the basic conditions of the space. The two 
planes themselves are immovable. 

If we compare the levels with an electrical conductor, then 

E=0 applies to the space between the planes, and 0n E× =  and
0n Eε σ⋅ =  applies to the planes themselves. So it is valid for 

the potential in the conductor and on the surface E φ= −∇ , 
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therefore applies .constφ = . Due to the special nature of the 

elementary particles, the comparison with a plate capacitor 
can be regarded as ideal. There are no losses at the edges. 
The electric field is therefore perpendicular to the surfaces 

0n Eε σ± ⋅ = ±  (24). Outside the conductor is E=0. The energy 

stored in the capacitor results in 
1
2eW dfσφ= ∫  (25). 

For the total force on a conductor applies 20

2 F
F E ndfε
= ∫  (26). 

The force on the positive charge of a plane leads to 
2

20

02 2 zF

QF E ndf e
F

ε
ε+ = − = −∫  (27) or related to one plane each of 

proton and electron to 
( )2

2
0

2
2 e

e
F

Rε
= −  (28). This force is constant 

in the range of its validity, i.e. from a distance of one eR , 

because then there is no space in between in which the 
particle could escape. If we add the energy that enters the 

system, then 
( )2

2
0

2 ( )
2C e p

e

e
W F ds R d

Rε
= ⋅ = − −∫  (29) applies.  

Fig. 1 

This energy must therefore be applied at least to free a 
proton from the electron, i.e. to make it independent again. 
Only as long as a particle can be regarded as independent, the 
charge should start from the whole particle and appear like a 
spherical field. It seems than as a point charge. This should 

be the case up to a distance of 1,52 2
pe

e e

dRR R R= + + ≈  
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(Fig.1). First the energy 

1,51,5 2

0

²( )
4 4 1,5

e
e
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e
e

e eW e E r ds
r Rπε πε∞ ∞

= = =
⋅∫  

(30) has to be applied. Quantitatively this would be 

0,34eW MeV= . This value will be much lower, because the point 

potential form is probably already earlier not given and the 
part of the outer planes disappears with it already earlier. 
At the latest starting from a distance of the planes from one 

eR  the space is fixed and only the geometry of the two near 
planes should make a contribution (fig. 1). The two outer 
planes must now be bound to the outside for a while, then the 
particles would continue to approach, but now like capacitor 

plates. The energy for this is then 
2

2
0

( / 2) 1(1 ) 0,78
2 1836e e

e

eW R MeV
Rε

= − =  

(31). Thus, the particles which are in the system as binding 

energy, became 1,1eW MeV< free. 

The arrangement of the two particle planes can be further 
transformed with a small additional expenditure of energy 
because the proton planes can also be located within the 
electron planes. 

One difficulty is that only certain areas of the room are 

allowed. The proton cannot take a further Pd  step, because 
otherwise electrons and proton planes lay on top of each other 
- occupy the same space. This means that the electron jumps by 
one Re, therefor energy must be supplied, at the same moment 

the proton jumps Pd  closer. In the next time step the electron 

stays where it is and the proton jumps Pd  forward by another 

step and in a third step the electron jumps back, loses its 
energy again and the proton is inside the electron. The energy 
balance for this is relatively low, but there must be special 
conditions so that the electron can absorb and release energy 
for a short time. This means that for a free neutron that is 
far from other charges, there is stability between electron 
and proton (Fig. 2). 

The numerical value for the binding energy is remarkable 
because it corresponds to that of the neutron, which is now 
derived solely from the electrical interaction. If the proton 
planes have exceeded the negative charge plane, they remain 
reasonably stable within the negative charges. So far it would 
be possible to escape laterally, this is not allowed with a 
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fixed space structure so any longer. Only if both particles 
are independent all three dimensions are to them again at 
disposal. 

Fig. 2 

For the next higher element, deuterium, which consists of a 
neutron and a proton, we assume that the neutron in its closed 
form is electrically neutral towards the outside. This means 

that a proton can approach to about one eR  without energy loss 

(Fig. 3). 

Fig. 3 

From about one eR  onward, there is a high probability that the 

electron will jump towards the new proton by one eR  and that 

the old proton will thus be about / 2eR  outside it (Fig. 4). 
During this jump, the system loses energy, which holds the 
particles together afterwards as binding energy. 
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Fig. 4 

 

Fig. 5 

If we assume that in the one-dimensional shift there are only 
two sides with half a charge opposite each other than the 

system 
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 
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 = ≈  (32) loses pairs of the two right 

planes 

2
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e

e
e

e R
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 
 
 = and pairs of the left ones. Then it loses 

energy over the distance from / 2eR  the left proton pair that 

can approach Pd  to the left electron plane 
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2 2 0,4
2

e

e
e
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 
 
 = ≈  

(Fig. 5). The total binding energy is then 2.2 MeV and is thus 
as large as the empirically measured binding energy. 

The space between the particles is not arbitrarily dense 

existent. For the electrons it is in the range of eR  steps, for 
the protons it is in dP units. When two electrons approach each 
other, they feel the repulsive forces up to a distance of one 
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eR . If it is possible to bring the two charges even closer, 

then only space in sizes dP exists. I.e. the particles can 
approach each other further, but suddenly do not exert any 
force on each other, because they do not "see" each other 

anymore. There are no more integer eR  steps between them. The 

closest proximity would therefore be a distance of dP. But 
these connections are instable and would quickly leave the 
inner area again and thus come into the repulsive part. It 
would be different if protons were present. The levels of the 
protons and the electrons continue to exert attracting forces 
on each other and lead to a stability of the atoms. Thus, a 
deuterium atom and a neutron can combine to form a tritium and 
together assume an extremely compact form, which is only 

slightly above  that of eR  (Fig. 7). Although this expansion is 

very compact, it also determines a limit that cannot be 
exceeded. In general, it would also mean that under 
conditions, such as after a Super Nova, which can lead to a 
black hole, at a density at which the entire possible space is 
exhausted, at the latest, a new stability is achieved, solely 
due to the restriction of space in the elementary region.  

Let us assume that with the connection from 2
1 H  to  3

1 H  the 

neutron (1MeV) approaches the deuterium (2,2MeV) up to one Re 
distance without loss of energy. Then it should compress 
linearly from about 3 to 4 Re (Fig. 6) to about 1 Re. But not 
with 2 half charges each, but all four charge halves should 

participate, so that we get 2 3 0,8 4,8MeV MeV≈ ⋅ ⋅ =  (Fig. 7). So 

in the compact structure about eight MeV are bound to energy, 
which must be overcome in order to decompose all particles 
again into their basic building blocks. This also corresponds 
to the experimentally measured value. 

Fig. 6 
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Fig. 7 

The structure of the elements could be continued in this 
simple form, but there is an increasing discrepancy in the 
one-sidedness of space compression, which would lead to ever 
longer one-dimensional space concentration, although other 
space dimensions could be occupied. 

For this reason, the further linkage of the particles will not 
be continued here, but some dynamic processes would have to be 
examined more closely beforehand. 


