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4. Particles as Planes in the Micro- and Macrocosmos 

Christian Hermenau 

 

So far, the structure of the universe has been dealt with on 

large scales. The development then takes place from the edge 

to the inside and not as in the standard model from a small 

punctiform area of space, about inflation, to a whole. 

Whenever there is a small open area at the edge of the 

universe, a new pair of particles\counter particle is formed 

in a short, equal process. The counter particle, together with 

the edge, moves away at the speed of light and the remaining 

neutron particle remains at its original position. It does not 

move linearly but rotates in steps and after each complete 

cycle gives off a space size in UR-direction to the counter 

particle. 

Between the particle and the counter particle, staked out 

sizes are defined that have reality for us as the only 

possible space step. During its rotation, the neutron occupies 

three space positions before the cycle repeats itself. The 

neutron should consist of two corresponding surfaces of size 

Re², which are assigned to each other in the distance Re 

located and the electron and a second pair of planes of the 

same surface size but with a distance dp. This latter plane 

distance depends on where it is in the universe. The radius 

position in relation to the size of the universe is to 

determine the distance between the two planes. At our position 

this would be P e e Pd R m m . This second pair of planes then has 

the meaning of the proton. dP thus defines a second reference 

value in space, which should have reality for us in addition 

to Re. 

Proton and electron planes rotate. They point once in the RU 

direction and once in the opposite direction. In the two 

intermediate times, the plane pairs can potentially take any 

direction in space; it is the moment when the electron and the 

proton exchange with each other. In the initial state we have 

23 1n 10 s  connections to the antiparticle or to each other. The 

size dP is the smallest possible shift of the planes in 

relation to each other. It represents a potential energy 

value, which is needed to lift a ground mass particle on the 

universe radius by one Re-step. 
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For a proton plane pair at our universe position, the distance 

would then be 
18

pd 1.5 10 m  , which in relation to the electron 

distance equals their mass ratios e P

p e

R M
1836

d M
  . 

With each Re-step by which the universe enlarges, the planes of 

the newly formed particles that lie at the edge (the 

antiparticles) move away by a corresponding energy value ΔE, 

which is shown by the fact that the distance from dmt 

approaches the distance more and more Re. mt has the meaning of 

an energy quantity that corresponds to the potential of the 

position on RU. 

For the distance e l
P

Uo

m R
d

M
 (1) apply, where Rl should indicate 

the respective position in the universe. 

At the starting time UT 0  was U eR(t 0) R R    and thus the plane 

distance was 
57e

0 e

Uo

m
d R 1 10 m

M

   . This tiny first plane distance 

d0 also corresponds to the plane thicknesses   and becomes 

important much later in connection with the storage of 

information. 

At the end Te dP=Re applies for the plane distance and we get a 

radius size of 
27Uo e

U

e

M R
R 5 10 m

m
    for the universe. After 540 

billion years the universe would have reached its greatest 

extent, the development process then reverses itself. 

With these new assumptions in the overall structure, an 

attempt is now being made to extend this to quantum mechanics. 

Can the proton/electron planes, which are now again to be 

local and temporally precisely defined quantities, be 

connected with the observations of reality in the microcosm 

and thus with quantum mechanics? 

According to classical mechanics, a particle in a potential 

field is described by the kinetic energy 

2p
T

2m
  and the 

potential energy V(r), which together make up the total energy 

E:   
p²

E V(r)
2m

    (2).  
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If the De Broglie relationship is used here for E, we get the 

dispersion relation 
h²k²

V(r)
2m

 h  (3). The wavelength should be 

small against the typical change length of V(r). 

Solutions for this equation would be a monochromatic wave of 

the form 
i(kr t)Ae  

rr

  (4). This would be a complex-valued function 

to be assumed as a scalar function. 

With i
t


 


h h  and 

²k² ²

2m 2m
   

h h
 the well-known Schrödinger 

equation follows from this 

²
i V(r)

t 2m


   



h
h     (5) 

It is postulated that this equation should also apply in the 

quantum regime. 

The Schrödinger equation is linear and homogeneous, so that 

usually a multitude of plane waves (4) which all fulfil the 

equation (5) can be combined to a wave packet 0i(k r t)(x, t) A(x, t)e  
r r

 

(6). An approximation for the amplitude can be given as 

0

0

k

0

k

d
sin x t k

dk
A(x, t) 2A

d
x t

dk

  
    

   
 

  
 

  (7). 

This wave packet melts with time, but rests in a system moving 

at the speed 

0g

g

k

d
v

dk


 , here the amplitude becomes time-

independent. 

Since we assume that protons and electrons are two 

indefinitely endless thin planes of area size 
2

0 eA r , which 

have two planes of fixed size and a constant distance to each 

other corresponding to their respective mass, then it is no 

longer possible that they can be regarded as a slowly 

dissolving wave packet. Nevertheless, the position is further 

of wave-like character, which is perhaps not due to the local 

particle itself but is to be found in connection with other 

particles. 

Particles do not dissolve over time, but their exact position 

can only be determined statistically. In order to formally 
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eliminate this contradiction, quantum mechanics was extended 

to a statistical quantum mechanics in which the exact position 

of the wave function is no longer determined, but its 

expectancy value. 

Then the solution ψ, which fulfil the Schrödinger equation, 

are combined to a density ρ = ψψ
*
 (8), which leads to the 

continuity equation i i i(2 G ) 0     (9). 

For example, for a charged particle in an electromagnetic 

field, the corresponding continuity equation looks like this: 

div( v) 0
t


  


 with  * * *i q

v : J ( ) A
2m m

       
h

  (10) 

J in it is now the probability current density. Analogous to 

the quasi-classical limit case we define than ρ as charge and 

current density, λ=qρ and j= qρv. From this follows the charge 

continuity equation: divj
t





 with * * *i q q²

j ( ) A
2m m

     
h

 (11) 

From (9) results after the integration over the whole room:  

3

d
d³ vdf 0

dt


    
¡

(12) (for integration the Gauss sentence was 

used). In the quasi-classical borderline case vdf


  is the 

particle flow in the infinite which corresponds to the 

preservation of the particle number in the whole, thus 

3

d³ const.  
¡

  

If V  is a macroscopically small, but microscopically 

sufficiently large volume, then 

v

d³


   is the number of 

particles in Volume V . 

In the quantum regime, however, 

v

d³


   can no longer be 

interpreted as a particle number, because even if it is 

constant, the wave packet dissolves over time. In addition, 

one-particle experiments do not show a clear connection 

between ρ and the particle location. It is better to give 

v

d³


    

in the one-particle experiment than the expectancy value of 

the particle number in V . ρ thus becomes probability density 
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in the quantum regime and J= vρ becomes probability current 

density accordingly. 

The sufficiently large volume V  can also stand for the range 

in which a sufficiently large number of particles are in 

exchange with each other. 

In the now modified image of the particle, a movement only 

occurs step by step in whole Re or dp steps. The smallest time 

interval is 
23

0T 10 s  and each exchange is to be transmitted in 

Re steps to T0 time units. Thus a speed change in t  times 

occurs, which leaves the particle in these time intervals 

until a new change occurs. The connection to the homogeneously 

distributed particles in space is therefor of random 

statistical nature only, because it is immensely large. It 

should correspond to a three-dimensional Gaussian 

distribution. Then, 
0

1
(k k )²a

2
0Ne



  (13) represents a function that 

describes the expectancy value that the particle is in the 0V  

space range. However, this location is not determined by a 

free independent particle, but by the corresponding contact to 

other particles, which exists numerically in the range of 10
20
 

contacts/s to a correspondingly high number of particles. The 

respective potentials related to the mean motion have an 

extremely small value. 

If we observe a free particle for a relatively short period of 

time from our macroscopic point of view, we still have to do 

an averaging around a space range V at the location, simply 

because the particle connection is so extremely high. We would 

have to move in the range of 
2010 s

 to see the particle motion 

and would only then observe the jump motion of a resting free 

particle in turn is determined by the initial conditions.  

If it comes to the exchange then both particles involved 

should be in "line of sight" and they should be in integer 

distance dP to each other. 

The normalization constant N of (13) results from the 

requirement 0(k k )a²2

01 dk ² N dke N²
a

  
      to 

4

a
N 


(14). 

The known wave function in the local space then has the 

following form: 
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0

2

0
1 k² 0(k k )²a² i(kx t)
2 2m

k a²t
x² 2iak x i

N N m(x, t) dke e exp
t2 t a² 1 ia 1 i

ma²ma²

  

 
  

    
      
  


h

h

hh
 (15). 

What is the transition from quantum mechanics to classical 

mechanics like? How can we convert these wave packets of the 

known formalism of classical mechanics to the macro range? 

Therefore we start again from the principal function of 

classical mechanics. According to the Hamilton-Jakobie 

differential equation, the motion of a particle that fulfils 

its principal function fS S(q,...,q , t)  the equation of motion 

i

i

S S
H(q , , t) 0

t q

 
 

 
 (16) with i iH(q ,p , t) as the Hamilton function 

applies to the motion. It follows for a free particle in 

potential V(r): 

 
2

S(r, t)S(r, t)
V(r) 0

t 2m


  


 (17). 

After that, the properties of the principal function with 

respect to quantum mechanics it applies mv = p = ∇S; the 

particle motion thus follows perpendicular to the surfaces 

S=const. of the principal function. 

Furthermore applies 
S

dS S dr dt p dr Edt
t


     



r r r
 (18). 

S should be constant, so dS = 0 and thus applies to the 

movement of S: s

S const.

ds E
v

dt p

   . If we insert the De Broglie 

relation here, we get sv
k


 . 

These results in a relation between the movement of the phase 

surfaces of the plane waves and the particle movement 

perpendicular to the surface S, which we regard as constant. 

The phase surfaces of the matter wave can be equated with the 

constant surfaces S of the Hamilton-Jakobi theory in the 

quasi-classical boundary case. 

Let us now consider two free particles which are in some 

proximity to each other. They should be in the electric or 

gravitational potential field to each other. This field is now 
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defined more precisely by the condition that the space only 

gains reality in Re or dp steps and that the connection always 

refers to exactly two particles at a time. Then the contact in 

its smallest size can be described as a plane wave 
i(ks t)Ae 

r r

 

which goes off in the direction of the second particle. In 

this smallest basic size 
0

0

2
2

T


    and ek 2 2 r     applies. The 

phase velocity of the plane wave is at vs=c the surface size of 

the planes is limited to 
2

0 eA r  (19) and only one single pulse 

is to go off. In addition to the phase surfaces, there are now 

the two surfaces of the particle, which correspond to the 

information about its particle mass, i.e. not the particle 

itself, but the information about how the space length related 

to the basic unit Re was compressed by the particle. If this 

space piece meets the second particle after a corresponding 

period of time, it changes the original space position in 

relation to the whole by exactly one space piece. In the case 

of a proton, for example, by exactly one dp towards the first 

particle. Only one whole number jump is possible at a time. 

Now there remains a movement of the second particle in the 

direction of the first particle, which takes place in dp steps 

on the one hand and in t units on the other. This t represents 

a period of time that originally required the information from 

the first to the second particle. The velocity of the particle 

is 
p

T

d
v

t


 as long as no other contact to any particle occurs. 

The sequence should be valid for neutral masses as well as for 

charges. The decisive difference is that charges are normally 

limited to two particles, while masses are exchanged with an 

indefinite number of particles distributed throughout space. 

Take, for example, a charge that is briefly excited in the 

atom and then spontaneously jumps back to the ground state. 

In the ground state (n=1, l=0, m=0) the wave function of a 

one-particle system is determined by 
B

1

3
2

r/r
iE t/

B

e
e

(r )


 



h
(20). 

This results in S=-E1 t for the principal function. This means 

that the velocity is according to Bohm's interpretation 

e

S(r, t)
r 0

m


 &  (21). The trajectories are areas which are 

distributed with a probability |ψ|² and do not really move. 

They rest quasi at r=r0 in quantum potential. In contrast, 
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excited states have the form ni(m E t/ )

nlmY (r, )e   h
(22). Here S gets 

the form nS m E t h  and then the velocity is 
S m

r e
rsin




 
  

h
&  

(23) with μ as reduced mass and m as magnetic quantum number. 

Trajectories in it are circles with r=r0, ϑ=ϑ0 and 2

0 0

mt

r sin


 

h
. 

The probability density is distributed according to the sphere 

function 
2

nlm 0 0Y (r , )  (24). 

We have determined that charges are predominantly in contact 

with a counter charge. So if a particle is excited from the 

outside, there is a corresponding distant opposite, which it 

aims at. The opposite should lie in the line of sight and it 

must not be connected to the nucleus via a corresponding wave 

draught, but only to the foreign charge. The disturbance of 

the room size in the direction of movement and the amplitude 

perpendicular to it moves with c towards the opposite. The 

location of the electron remains within the range of the two 

orbits. Decisive for the energy is not the deflection, but the 

duration, which an electron needs to come from an equilibrium 

state to a new one. This time period T defines the frequency 

and at the same speed of propagation in the vacuum, the 

wavelength λ. The movement of the electron shows, like the 

plane normal vector, at the moment of the movement away from 

the nucleus and at the moment of the connection to the foreign 

particle in its direction. For example, the Lyman-Alpha 

transition λ=121,6nm shows that the particle is directed to a 

foreign particle over a period of 
15t 2 10 s  , which seems to be 

short, but compared to 
2010 s

, the typical connection times to 

other particles, it is 100,000 times longer. The actual 

exchange with the nucleus is interrupted over a long period of 

time from the particle's point of view. 

This seemingly so simple single oscillation is then subject to 

a multitude of superimposed movements at its jump, which leads 

to the fact that an exact localization is not possible at all. 

What we always see is a summary, an average of the motion and 

a stabilization on orbits in the atom that correspond to the 

expectancy value. 

Thus, the pulse of a single photon causes, in comparison to 

the other basic quantities, a long lasting one-sided movement 

of the second particle; an interruption of the one-sided 
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electrical connection to the nucleus which represents a 

correspondingly much larger foreign potential. 

The assumption of two fixed planes instead of one sphere, 

which symbolize the particles and define the space, leads to 

further simplifications in the micro range, which will be 

discussed later in more detail. 


